Segregation of phosphatidic acid-rich domains in reconstituted acetylcholine receptor membranes.
نویسندگان
چکیده
Purified Acetylcholine Receptor (AcChR) from Torpedo has been reconstituted at low (approximately 1:3500) and high (approximately 1:560) protein to phospholipid molar ratios into vesicles containing egg phosphatidylcholine, cholesterol, and different dimyristoyl phospholipids (dimyristoyl phosphatidylcholine, phosphatidylserine, phosphatidylglycerol and phosphatidic acid) as probes to explore the effects of the protein on phospholipid organization by differential scanning calorimetry, infrared, and fluorescence spectroscopy. All the experimental results indicate that the presence of the AcChR protein, even at the lower protein to phospholipid molar ratio, directs lateral phase separation of the monoanionic phosphoryl form of the phosphatidic acid probe, causing the formation of specific phosphatidic acid-rich lipid domains that become segregated from the bulk lipids and whose extent (phosphatidic acid sequestered into the domain, out of the total population in the vesicle) is protein-dependent. Furthermore, fluorescence energy transfer using the protein tryptophan residues as energy donors and the fluorescence probes trans-parinaric acid or diphenylhexatriene as acceptors, establishes that the AcChR is included in the domain. Other dimyristoyl phospholipid probes (phosphatidylcholine, phosphatidylserine, phosphatidylglycerol) under identical conditions could not mimic the protein-induced domain formation observed with the phosphatidic acid probe and result in ideal mixing of all lipid components in the reconstituted vesicles. Likewise, in the absence of protein, all the phospholipid probes, including phosphatidic acid, exhibit ideal mixing behavior. Since phosphatidic acid and cholesterol have been implicated in functional modulation of the reconstituted AcChR, it is suggested that such a specific modulatory role could be mediated by domain segregation of the relevant lipid classes.
منابع مشابه
Lipid-protein interactions at the nicotinic acetylcholine receptor. A functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers.
The structural and functional properties of reconstituted nicotinic acetylcholine receptor membranes composed of phosphatidyl choline either with or without cholesterol and/or phosphatidic acid have been examined to test the hypothesis that receptor conformational equilibria are modulated by the physical properties of the surrounding lipid environment. Spectroscopic and chemical labeling data i...
متن کاملLipid composition alters drug action at the nicotinic acetylcholine receptor.
We tested the hypothesis that membrane lipid composition influences drug action at membrane proteins by studying local anesthetic action at the nicotinic acetylcholine receptor (nAChR). Infrared difference spectra show that concentrations of tetracaine consistent with binding to the ion channel (<50 microM) stabilize a resting-like state when the nAChR is reconstituted into phosphatidylcholine ...
متن کاملAssessing the lipid requirements of the Torpedo californica nicotinic acetylcholine receptor.
The lipid requirements of the Torpedo californica nicotinic acetylcholine receptor (nAChR) were assessed by reconstituting purified receptors into lipid vesicles of defined composition and by using photolabeling with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) to determine functionality. Earlier studies demonstrated that nAChRs reconstituted into membranes containing phosphati...
متن کاملRegulators of G-protein signaling (RGS) 4, insertion into model membranes and inhibition of activity by phosphatidic acid.
Regulators of G-protein signaling (RGS) proteins are critical for attenuating G protein-coupled signaling pathways. The membrane association of RGS4 has been reported to be crucial for its regulatory activity in reconstituted vesicles and physiological roles in vivo. In this study, we report that RGS4 initially binds onto the surface of anionic phospholipid vesicles and subsequently inserts int...
متن کاملPhospholipase C activity affinity purifies with the Torpedo nicotinic acetylcholine receptor.
Nicotinic acetylcholine receptors mediate fast synaptic transmission by fluxing ions across the membrane in response to neurotransmitter binding. We show here that during affinity purification of the nicotinic acetylcholine receptor from Torpedo, phosphatidic acid, but not other anionic or zwitterionic phospholipids, is hydrolyzed to diacylglycerol. The phospholipase C activity elutes with the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 41 40 شماره
صفحات -
تاریخ انتشار 2002